随着大数据时代的出现,数据质量问题变得越来越重要。在许多因素中,缺少价值的数据是一个主要问题,因此开发有效的插补模型是研究界的关键主题。最近,一个主要的研究方向是采用神经网络模型,例如自组织映射或自动编码器来填充缺失值。但是,这些经典方法几乎无法在数据属性之间同时发现相关特征和共同特征。特别是,对于经典的自动编码器来说,这是一个非常典型的问题,他们经常学习无效的恒定映射,从而极大地伤害了填充性能。为了解决上述问题,我们建议并开发基于功能融合增强自动编码器的缺失值填充模型。我们首先设计并集成到自动编码器中,一个隐藏的层,该层由脱落神经元和径向基函数神经元组成,该神经元可以增强学习相关特征和共同特征的能力。此外,我们基于动态聚类(MVDC)制定了缺失的值填充策略,该策略已纳入迭代优化过程。该设计可以增强多维功能融合能力,从而提高动态协作缺失填充性能。通过实验比较与许多缺失值填充方法的实验比较来验证我们的模型的有效性,这些方法在七个数据集上进行了测试,而缺失率不同。
translated by 谷歌翻译
时间序列预测在许多现实世界中都起着重要的作用,例如设备生命周期预测,天气预报和交通流量预测。从最近的研究中可以看出,各种基于变压器的模型在预测时间序列中显示出了显着的结果。但是,仍然有一些问题限制了在时间序列预测任务上基于变压器的模型的能力:(i)直接在原始数据上学习由于其复杂且不稳定的功能表示,因此对噪声易受噪声; (ii)自我发挥的机制不足以对变化的特征和时间依赖性的关注不足。为了解决这两个问题,我们提出了一个基于变压器的差异重构注意模型Draformer。具体而言,Draformer具有以下创新:(i)对差异序列进行学习,该序列通过差异和突出序列的变化属性来保留清晰和稳定的序列特征; (ii)重建的注意力:综合距离注意力通过可学习的高斯内核表现出顺序距离,分布式差异注意通过将差异序列映射到适应性特征空间来计算分布差异,并且两者的组合有效地集中在具有显着关联的序列上; (iii)重建的解码器输入,该输入通过集成变异信息和时间相关来提取序列特征,从而获得了更全面的序列表示。在四个大型数据集上进行的广泛实验表明,Draformer的表现优于最先进的基线。
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译
High-utility sequential pattern mining (HUSPM) has emerged as an important topic due to its wide application and considerable popularity. However, due to the combinatorial explosion of the search space when the HUSPM problem encounters a low utility threshold or large-scale data, it may be time-consuming and memory-costly to address the HUSPM problem. Several algorithms have been proposed for addressing this problem, but they still cost a lot in terms of running time and memory usage. In this paper, to further solve this problem efficiently, we design a compact structure called sequence projection (seqPro) and propose an efficient algorithm, namely discovering high-utility sequential patterns with the seqPro structure (HUSP-SP). HUSP-SP utilizes the compact seq-array to store the necessary information in a sequence database. The seqPro structure is designed to efficiently calculate candidate patterns' utilities and upper bound values. Furthermore, a new upper bound on utility, namely tighter reduced sequence utility (TRSU) and two pruning strategies in search space, are utilized to improve the mining performance of HUSP-SP. Experimental results on both synthetic and real-life datasets show that HUSP-SP can significantly outperform the state-of-the-art algorithms in terms of running time, memory usage, search space pruning efficiency, and scalability.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
translated by 谷歌翻译
With the development of natural language processing techniques(NLP), automatic diagnosis of eye diseases using ophthalmology electronic medical records (OEMR) has become possible. It aims to evaluate the condition of both eyes of a patient respectively, and we formulate it as a particular multi-label classification task in this paper. Although there are a few related studies in other diseases, automatic diagnosis of eye diseases exhibits unique characteristics. First, descriptions of both eyes are mixed up in OEMR documents, with both free text and templated asymptomatic descriptions, resulting in sparsity and clutter of information. Second, OEMR documents contain multiple parts of descriptions and have long document lengths. Third, it is critical to provide explainability to the disease diagnosis model. To overcome those challenges, we present an effective automatic eye disease diagnosis framework, NEEDED. In this framework, a preprocessing module is integrated to improve the density and quality of information. Then, we design a hierarchical transformer structure for learning the contextualized representations of each sentence in the OEMR document. For the diagnosis part, we propose an attention-based predictor that enables traceable diagnosis by obtaining disease-specific information. Experiments on the real dataset and comparison with several baseline models show the advantage and explainability of our framework.
translated by 谷歌翻译
Because of the necessity to obtain high-quality images with minimal radiation doses, such as in low-field magnetic resonance imaging, super-resolution reconstruction in medical imaging has become more popular (MRI). However, due to the complexity and high aesthetic requirements of medical imaging, image super-resolution reconstruction remains a difficult challenge. In this paper, we offer a deep learning-based strategy for reconstructing medical images from low resolutions utilizing Transformer and Generative Adversarial Networks (T-GAN). The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction. Furthermore, we weighted the combination of content loss, adversarial loss, and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN. In comparison to established measures like PSNR and SSIM, our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.
translated by 谷歌翻译
In this paper, we target at the problem of learning a generalizable dynamic radiance field from monocular videos. Different from most existing NeRF methods that are based on multiple views, monocular videos only contain one view at each timestamp, thereby suffering from ambiguity along the view direction in estimating point features and scene flows. Previous studies such as DynNeRF disambiguate point features by positional encoding, which is not transferable and severely limits the generalization ability. As a result, these methods have to train one independent model for each scene and suffer from heavy computational costs when applying to increasing monocular videos in real-world applications. To address this, We propose MonoNeRF to simultaneously learn point features and scene flows with point trajectory and feature correspondence constraints across frames. More specifically, we learn an implicit velocity field to estimate point trajectory from temporal features with Neural ODE, which is followed by a flow-based feature aggregation module to obtain spatial features along the point trajectory. We jointly optimize temporal and spatial features by training the network in an end-to-end manner. Experiments show that our MonoNeRF is able to learn from multiple scenes and support new applications such as scene editing, unseen frame synthesis, and fast novel scene adaptation.
translated by 谷歌翻译
Feedforward fully convolutional neural networks currently dominate in semantic segmentation of 3D point clouds. Despite their great success, they suffer from the loss of local information at low-level layers, posing significant challenges to accurate scene segmentation and precise object boundary delineation. Prior works either address this issue by post-processing or jointly learn object boundaries to implicitly improve feature encoding of the networks. These approaches often require additional modules which are difficult to integrate into the original architecture. To improve the segmentation near object boundaries, we propose a boundary-aware feature propagation mechanism. This mechanism is achieved by exploiting a multi-task learning framework that aims to explicitly guide the boundaries to their original locations. With one shared encoder, our network outputs (i) boundary localization, (ii) prediction of directions pointing to the object's interior, and (iii) semantic segmentation, in three parallel streams. The predicted boundaries and directions are fused to propagate the learned features to refine the segmentation. We conduct extensive experiments on the S3DIS and SensatUrban datasets against various baseline methods, demonstrating that our proposed approach yields consistent improvements by reducing boundary errors. Our code is available at https://github.com/shenglandu/PushBoundary.
translated by 谷歌翻译
Real estate appraisal is a crucial issue for urban applications, which aims to value the properties on the market. Traditional methods perform appraisal based on the domain knowledge, but suffer from the efforts of hand-crafted design. Recently, several methods have been developed to automatize the valuation process by taking the property trading transaction into account when estimating the property value. However, existing methods only consider the real estate itself, ignoring the relation between the properties. Moreover, naively aggregating the information of neighbors fails to model the relationships between the transactions. To tackle these limitations, we propose a novel Neighbor Relation Graph Learning Framework (ReGram) by incorporating the relation between target transaction and surrounding neighbors with the attention mechanism. To model the influence between communities, we integrate the environmental information and the past price of each transaction from other communities. Moreover, since the target transactions in different regions share some similarities and differences of characteristics, we introduce a dynamic adapter to model the different distributions of the target transactions based on the input-related kernel weights. Extensive experiments on the real-world dataset with various scenarios demonstrate that ReGram robustly outperforms the state-of-the-art methods. Furthermore, comprehensive ablation studies were conducted to examine the effectiveness of each component in ReGram.
translated by 谷歌翻译